
Concurrency Control

Northeastern University

College of Professional Studies

ITC6000 80036 Database Management Systems

Presentation Assignment

Date: 6 May 2024

Submitted by Nazar Mammedov

Presentation Outline

 What is concurrency control?

 Three problems of concurrency control

 Locking Methods

 Time Stamping method

 Concurrency Control in Oracle Database

 Conclusion

What is concurrency control?

 In real-world transactions, such as paying for an electric bill or your
credit card company withdrawing money from your account can take
place at the same time.

 Databases need to be able to execute these concurrent transactions.

 Managing the execution of concurrent transactions is called
concurrency control.

 Companies consider concurrency control characteristics of DBMS
when choosing vendors. Example: Uber’s migration from PostgreSQL

Scholars of concurrency control in DBMS

Source: https://amturing.acm.org

James Gray Phil Bernstein

Source: https://www.microsoft.com/

What is a transaction?

 Most of practically-useful real world actions correspond to
transactions.

 A transaction is a sequence of database operations that need to be
entirely completed or aborted.

 All transactions must have these properties:
– Atomicity: all or none of operations must be completed.
– Consistency: Transactions must start and finish with consistent database
– Isolation: Data operations in transactions must be isolated from each other
– Durability: The results of completed transactions must be permanent.

Three problems of concurrency control

 Lost updates
– Changes made by one transaction are lost because of overwriting

by another transaction.

 Uncommitted data
– A transaction uses uncommitted (temporary, draft) changes

generated by a previous transaction as if they are real change.

 Inconsistent retrievals
– A transaction uses inconsistent data due to reading the data

before and after other transactions work on the data.

Lost Updates

 What happens when two people want to deposit money
in the same account?

 John has $100 in his account.

 Alice wants to send $20 to John.
– Read John’s balance and add $10 and update the balance $120

 Bob wants to send $50 to John.
– Read John’s balance and add $50 and update the balance $150

 If Alice cannot complete her transfer before Bob initiates
his transfer Alice’s money is lost.

Source: pexels.com

How to deal with concurrent transactions?

 A special DBMS process called scheduler determines the order
in which the operations of concurrent transactions are
executed.

 First-come, first-served – Transactions are executed in the
order they were received by the DBMS

 Concurrency conflicts occur when two transactions run
concurrently and at least one of them writes to the database.

Concurrency control approaches and methods

 Based on assumption regarding the
likelihood of conflict between
transactions, two approaches are
used:

– Pessimistic – conflict is likely

• Used with frequently updated data

– Optimistic – conflict is unlikely (or
rare)
• Used with data with few update

transactions

Concurrency control
methods

Pessimistic
approach

Locking
methods

Time stamping
methods

Optimistic
approach

Read,
validation, write

method

Locking Methods

 Locking methods aim to prevent
concurrent use of data item that can
produce data inconsistency.

 Commonly used technique in
concurrency control.

 To guarantee exclusive use of a data item
by a transaction the DBMS provides a
lock.

Source: https://dbaparadise.com/

Lock Granularity

Lock granularity
level

What is locked? Use case Good for
multiuser?

Database level The entire database is locked Good for batch processes, database
backup process

No

Table level

Table(s) used by a transaction
are locked

Good for operations reading the
entire table, generating reports from
the entire table

No

Page level Locks diskpages used by a
transaction

Good for multi-row operations that
don’t need to change the entire
table, payroll calculations

Yes, most frequently
used method

Row level Rows used by transaction are
locked

Transactions operating on different
rows, bank accounts

Yes, frequently used

Field level Only fields accessed by
transaction are locked

Locking fields for sensitive data,
hiding SSN field from view

Yes, but rarely used
due to high
overhead

Lock Types

Type What happens? Use case

Binary Locks Locks are either locked
or unlocked

Rarely used due to their
restrictive nature

Exclusive
locks

Access is reserved for
the transaction locking
the object

Updating a data item

Shared locks Two read transactions
share access to the data

Used for read-only
operations

Addressing locking problems

 Locks can lead to two problems:
– Serialization is impossible
– Deadlocks – two transactions blocking each other indefinitely

 Serializability is achieved through two-phase locking (2PL) protocol.

 Deadlocks are addressed using the following:

– Deadlock prevention: A transaction is aborted if a deadlock is likely
– Deadlock detection: The DBMS monitors and rolls back the deadlocked

transaction
– Deadlock avoidance: get all locks necessary for the transaction, roll back if

cannot

Deadlock example

 Row at employee_id = 100 is locked by Transaction 1
 Row at employee_id = 200 is locked by Transaction 2

 Transaction 1: SQL> UPDATE employees SET salary =

salary*1.1 WHERE employee_id = 200;

 Transaction 2: SQL> UPDATE employees SET salary =
salary*1.1 WHERE employee_id = 100;

 Deadlock occurs.

Source: https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/

Time Stamping Methods

 The time stamping method attaches a time stamp to each transaction and uses the
time stamp to determine the order in which conflicting operations are executed.

 There are two requirements for time stamps:
– Uniqueness – they must be unique in the DBMS
– Monotonicity – their values must always increase

 Each value in the database must have two additional time stamps:
– One for the last read operation
– One for the last update operation

 The main disadvantage of the time stamping method is that it requires a lot of
memory and processing resources.

Time Stamping Schemes

 If two transactions conflict, one is rolled back and issued a new time stamp value
and reenters the execution queue.

 There are two schemes for time-stamping:

– Wait/die scheme – the older transaction waits for and executes after the younger transaction.

Example: If Customer A has an appointment number lower than the Customer B who is already
receiving the service, Customer A must wait

– Wound/wait scheme – the older transaction rolls back the younger transaction and assigns a

new higher time stamp. Example: If Customer A has an appointment number lower than the
Customer B who is already receiving the service, the desk stops servicing Customer B, sends to
waiting room, proceeds to serve Customer A

 In the time stamping method, deadlocks are avoided by assigning a time-out value
for each lock request. After the time-out expires, the lock request is cancelled and
the transaction is rolled back.

Concurrency Control in

 The latest version is Oracle Database release 23

 Oracle uses the following mechanisms to manage concurrency control:
– Multiversion Read Consistency
– Locking mechanisms
– ANSI/ISO Transaction Isolation Levels

 Oracle Database automatically manages locking. Users can manually lock if
necessary.

 Oracle uses row-level locking (rather than page-level)

 Oracle never escalates locks because it can increase the likelihood of deadlocks.

Source: oracle.com

Multiversion Read Consistency in
Oracle Database

 Multiple versions of data are maintained
that are consistent for a single point in
time.

 Never allows dirty reads (reading of
uncomitted data in another transaction).

 Provides statement-level and transaction-
level read consistency.

 Oracle uses SCN (System Change Number)
to determine versions of data at different
points in time.

 Changes after SCN 10023 are ignored.

Source: https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/

Key Takeaways

 Concurrency control is a fundamental feature required for modern multi-user DBMS.

 Real-world concurrency control requires compromise between performance and flexibility.

 The more granular and flexible concurrency control the more computing resources we need.

 Pessimistic concurrency control is good for simultaneous manipulation of data accessed by
multiple users where consistency is more important than the speed.

 Optimistic concurrency control is good and fast if restarting a transaction happens seldom
and is not costly for business.

 Real-world DBMS-s use complex and diverse methods of transaction control that go beyond
the textbook content.

References

 Coronel, C., & Morris, S. (2016). Database Systems: Design, Implementation, & Management.
Cengage Learning.

 ACM. James Gray. Retrieved May 5, 2024
 https://amturing.acm.org/award_winners/gray_3649936.cfm

 Microsoft. Phil Bernstein. Retrieved May 5, 2024. https://www.microsoft.com/en-

us/research/people/philbe/book/

 Oracle. Database Concepts. Retrieved May 5, 2024.
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-
and-consistency.html

 Uber. Why Uber Engineering Switched from Postgres to MySQL. Retrieved May 5, 2024.
https://www.uber.com/blog/postgres-to-mysql-migration/

https://amturing.acm.org/award_winners/gray_3649936.cfm
https://amturing.acm.org/award_winners/gray_3649936.cfm
https://amturing.acm.org/award_winners/gray_3649936.cfm
https://www.microsoft.com/en-us/research/people/philbe/book/
https://www.microsoft.com/en-us/research/people/philbe/book/
https://www.microsoft.com/en-us/research/people/philbe/book/
https://www.microsoft.com/en-us/research/people/philbe/book/
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/data-concurrency-and-consistency.html
https://www.uber.com/blog/postgres-to-mysql-migration/
https://www.uber.com/blog/postgres-to-mysql-migration/
https://www.uber.com/blog/postgres-to-mysql-migration/
https://www.uber.com/blog/postgres-to-mysql-migration/
https://www.uber.com/blog/postgres-to-mysql-migration/
https://www.uber.com/blog/postgres-to-mysql-migration/
https://www.uber.com/blog/postgres-to-mysql-migration/
https://www.uber.com/blog/postgres-to-mysql-migration/

Thank you!

Q & A

